National Aeronautics and Space Administration

Revolutionizing Planetary Research with LUVOIR

(co-chair Solar System WG)

Harris (co-chair), Schmidt (STDT), Protopapa, Parker, Bodewits, Rivkin, Bauer, Petro

- Probing the origin of our Solar System
- Testing for ancient habitability
- Searching for biology / geology
- A bright astronomical future: LUVOIR and its siblings

Revolutionizing Planetary Research with LUVOIR

Villanueva - Goddard Space Flight Center

Within frost line, rocks and metals Beyond frost line, hydrogen condense, hydrogen compounds compounds, rocks, and metals stay gaseous condense. Methane (CH₄) Water (H₂O) condenses condenses to form ice to form ice Solar nebula temperature 2000 K 300 K 50 K Proto planets Comets Early Solar System Scatter of small bodies. High spin temps (OPR) Low spin temps (OPR) Late Heavy bombardment (LHB) High deuteration (D/H) Low deuteration (D/H) Large organic complexity Current Solar System High conversion ($CH_4 \rightarrow C_3H_8$) Lack of hypervolatiles **Low** conversion (CH₄ \rightarrow C₃H₈) Rocky planets Gas giants ~30 AU 3-5 AU

The water active region depends on the parent star

Hotter Stars

Sunlike Stars

Cooler Stars

Yet, **habitability** requires modest amount of water

Comparison of the ratio of total volume of water (oceans, rivers, lakes, ice) to total volume of land on Earth (USGS).

And perhaps small icy bodies (e.g. comets) delivered this water

- Isotopic ratios (endogenous vs. exogenous)
- Organic content (coma vs. nucleus)
- Ortho / para ratios (primordial vs. processed)

Comets and Trans-Neptunian-Objects (TNOs) also tell us about the formative times

Configuration of the Solar System 4.5 billion years ago, according to the **Nice model** (Morbidelli et al. 2005)

Where did the Kuiper Belt Objects (KBOs) form? How many objects? How many beyond?

Kuiper belt 30-50 AU

Key ice signatures (CH₄, H₂O, N₂) of KBOs are detectable in the 1.3 to 2.6 microns

And the best way to study **organics** is by measuring the 2.5 to 5 microns region

And the far ultraviolet reveals the secrets of high-energy processes in planetary atmospheres

UV observations with Rosetta of comet 67P/CG revealed that electrons (not photons) are responsible for the rapid breakup of water and carbon molecules erupting from the surface

And extreme UV revealed outstanding particle accelerations

Jupiter and Io Plasma Torus

Resonance acceleration of electron by electromagnetic waves.

Forming Jupiter radiation belt.

field to a region with a strong magnetic field.

Yoshioka et al. 2014

A large space telescope will permit unprecedented spatial resolutions

Resolving **nucleus** / **coma** Primordial vs. processed?

Map cryoactivity in **Triton** and in **most icy moons**

Map the surface of **Planet Nine** and of many distant KBOs

Resolution: **9 km** at 1AU
Telescope: **10 m**Nucleus of 10 km

Resolution: **270 km** at 30AU Telescope: **10 m**

Moon of 2,700 km

Resolution: **1800 km** at 200AU Telescope: **10 m** Planet of 26,000 km at 200 AU

Diffraction limited at optical wavelengths (~13 mas)

Deep characterization of the outer Solar System with a 10m space telescope

- Probing the origin of our Solar System
 - Comets / asteroids / KBOs (non-sidereal 60 mas/s)
 - Organic inventory and isotopic ratios
 - Access up to 3.5 microns (CH-stretch) and EUV
 - o Wide field of view (>8 arcmin) and IFU spectroscopy
- Testing for ancient habitability
- Searching for biology / geology

Ancient habitability leaves isotopic signatures ...

Thermal escape of lighter isotope

& regolith

Cryosphere:

(D/H)_{H2O} < 2E, representative of a more primordial chemistry

Water reservoir

Heavily **enriched** (D/H)_{H2O}

Thermal escape of lighter isotope

Surface water ice & regolith **Low** primordial (D/H)_{H2O}

Vent

Water reservoir

The (D/H)_{H2O} ratio reveals **the loss of water** from Mars and the age of the sensed gas.

Cryosphere:

 $(D/H)_{H2O}$ < 2E, representative of a more primordial chemistry

Mapping water D/H requires high resolving power ($\lambda/\delta\lambda > 50,000$)

Polar D/H ~8 VSMOW

15% higher than atmospheric Montmessin+2005

High water D/H

Full vaporization of H₂O and HDO

Low water D/H

~3 VSMOW
Fractionation
induced by
cloud formation

High water D/H

~7 VSMOW
Full vaporization of H₂O and HDO

Low water D/H

<3 VSMOW
Preferential
condensation
of heavy HDO

Vaporization

of the seasonal polar water reservoir

Ancient volcanoes (high altitude terrain)

Winter hemisphere (low temperatures)

Equator

Summer pole

Sub-surface water reservoirs?

And, **UV mapping** allows us to see these processes in action, and to observe atmospheric escape

Clouds and aerosols appear as a white "hazy" color, while intense dayglow is observed in the southern pole (MAVEN)

Mars had 6.5 times the water that it has today (i.e., lost 87% of its water)

- Probing the origin of our Solar System
 - o Comets / asteroids / KBOs (non-sidereal 60 mas/s)
 - o Organic inventory and isotopic ratios
 - Access to 3.5 microns (CH-stretch) and EUV
 - Wide field of view (>8 arcmin) and IFU spectroscopy
- Testing for ancient habitability
 - o Access to 3.7 microns (HDO fundamental) and UV
 - High flux dynamic range (weak and bright sources)
 - High resolving power (>50,000)
- Searching for biology / geology

Any recent activity produces **chemical imbalances** On Earth, methane is a powerful biomarker and sulfur dioxide is a strong geological indicator.

Volcanic or hydrothermal processes produce gases like $SO_2, CO_2, ...$ and hydrocarbons like CH_4 and C_2H_6

Biological activity produces gases like CH₄, H₂S ...

Sub-surface water reservoir

Vent

Volcanic or hydrothermal processes produce gases like $SO_2, CO_2, ...$ and hydrocarbons like CH_4 and C_2H_6

Biological activity produces gases like CH₄, H₂S ...

Sub-surface water reservoir

Chemistry in planetary atmospheres, then leads to a plethora of traceable **organic volatiles**

Formaldehyde (H₂CO)

Methanol (CH₃OH)

Ethane (C₂H₆)

Volcanic or hydrothermal processes produce gases like $SO_2, CO_2, ...$ and hydrocarbons like CH_4 and C_2H_6

Biological activity produces gases like CH₄, H₂S ...

Methane has been recently detected on Mars, yet organic species are marginally observable from ground – Need for space observatory

Plumes in Enceladus and Europa? Oceans?

What type of biology?

- Probing the origin of our Solar System
 - Comets / asteroids / KBOs (non-sidereal 60 mas/s)
 - o Organic inventory and isotopic ratios
 - Access to 3.5 microns (CH-stretch) and EUV
 - Wide field of view (>8 arcmin) and IFU spectroscopy
- Testing for ancient habitability
 - o Access to 3.7 microns (HDO fundamental) and UV
 - o High flux dynamic range (weak and bright sources)
 - High resolving power (>50,000)
- Searching for biology / geology
 - Search for imbalances → broad spectral coverage
 - High spatial (D>10m) and spectral resolution

Villanueva - Goddard Space Flight Center

Keck / VLT

Diameter: 10m Optical to 5um High-resolution Adaptive optics

ALMA

66 antennas of 12m Radio / THz High-resolution Interferometer

GMT

Diameter: 25 m
Optical to 2.5 µm
Four first light inst.
Adaptive optics

E-ELT

Diameter: 39 m
Optical to 14 µm
Six phase-A inst.
AO, WF, spec, MOS

TMT

Diameter: 30 m
Optical to 2.5 µm
Three phase-A inst.
AO, WF, spec, MOS

TMT

E-ELT

GMT

Keck / VLT / ALMA

Hubble (HST)

Diameter: 2.4m 0.1 to 1.7 µm Moderate resolution Diverse inst. suite

TESS

JWST

Diameter: 0.1m FOV 24 x 24 degree² Imaging / photometry No spectroscopy

JWST

Diameter: 6.5m 0.6 to 28.5 µm Moderate resolution Diverse inst. suite Ultra-cold (50K)

WFIRST

Diameter: 2.4m 0.4-1 µm Wide-field camera Coronagraph Contrast 10⁻⁹

LUVOIR

LUVOIR

Diameter: >9m UV, Optical, IR Coronagraph Wide-field camera UV and O/IR insts.

To **synthesize** planetary spectra with **any** of these facilities, a new tool is now **online** (Planetary Spectrum Generator, **PSG**):

Spectra of **planets**, **exoplanets** and **small-bodies** from 0.1 µm to 100 mm (UV/Vis/near-IR/IR/far-IR/THz/sub-mm/Radio) from any observatory (e.g., JWST, ALMA, Keck, SOFIA), any orbiter (e.g., MRO, ExoMars, Cassini, New Horizons).

The tool has a **3D orbital calculator** for **most bodies** in the Solar system, and **all confirmed exoplanets**. Observing geometries are: observatory, from surface, nadir, limb, occultation.

Radiative transfer performed with several models: GENLN3, correlated-K, non-LTE fluorescence, and surface models

It includes a noise and signal-to-noise calculator for quantum and thermal detectors, at any observatory.

Optical constants

- Brown/RELAB
- JPL/ASTER
- Jena/OCDB

- JPL/MolSpec
- Köln/CDMS
- GSFC/Fluor

Homogenized / validated

- GENLN3
- GSFC/Non-LTE
- GSFC/GCM
- Hapke model
- Scattering

- Planets
- Comets / small bodies
- Exoplanets
- Ephemeris calculator

Instrument models

- JWST
- ExoMars
- Keck / IRTF
- ALMA
- SOFIA
- •

Example of a **simulation** of an Earth-like **exoplanet** at 5pc with a **coronagraph** on LUVOIR

Example of a **simulation** of an Earth-like **exoplanet** at 5pc with a **coronagraph** on LUVOIR

Transmittances synthesized with NASA/PSG

Example of a **simulation** of an Earth-like **exoplanet** at 5pc with a **coronagraph** on LUVOIR

ExoEarth (radiance synthesized with NASA/PSG)

Example of a simulation of an Earth-like exoplanet at 5pc with a coronagraph on LUVOIR

Noise spectra synthesized with NASA/PSG

Example of a **simulation** of an Earth-like **exoplanet** at 5pc with a **coronagraph** on a 30m ground-based telescope

Example of a **simulation** of an Earth-like **exoplanet** at 5pc with a **coronagraph** on a 30m ground-based telescope

- Probing the origin of our Solar System
 - Comets / asteroids / KBOs (non-sidereal 60 mas/s)
 - o Organic inventory and isotopic ratios
 - Access to 3.5 microns (CH-stretch) and EUV
 - Wide field of view (>8 arcmin) and IFU spectroscopy
- Testing for ancient habitability
 - o Access to 3.7 microns (HDO fundamental) and UV
 - o High flux dynamic range (weak and bright sources)
 - High resolving power (>50,000)
- Searching for biology / geology
 - Search for imbalances → broad spectral coverage
 - High spatial (D>10m) and spectral resolution